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N O M E N C L A T U R E  

B, coefficient in equation (9); 
C v, specific heat; 
k, thermal conductivity; 
n, flow behaviour index; 
Nu, Nusselt number; 
r, radial co-ordinate; 
ro, radius of the inner tube; 
R, dimensionless radial co-ordinate, r/ro; 
7". temperature; 
~_-, velocity in the inner tube: 
(v:) ,  average velocity in the inner tube; 
w, mass flow rate; 
z, axial co-ordinate. 

Greek symbols 
3, eigen values of equation (10): 
6, Dirac delta function: 
A, parameter defined in equation (1): 
qS, eigen functions of equation (10); 
p, density; 
0, dimensionless temperature, 

(T1 - T2~ )/(Tto -- T2~); 
{, dimensionless axial co-ordinate, 

k t z  

pt  Cpi O':)r2o " 

Subscripts 
b, bulk: 
L, local: 
oc, asymptotic value; 
1, inner stream; 
2, outer stream; 
0, inlet of the inner stream, 

1. I N T R O D U C T I O N  

ANALYSIS of convective heat transfer in channel flow involves 
the solution of the appropriate energy equation with speci- 
fied conditions at the channel wall. The conditions normally 
used are those of uniform wall temperature, uniform wall 
heat flux or the boundary condition of the third kind. 
Considerable work has appeared in the literature on these 
problems. In the last decade, attention was directed towards 
problems associated with countercurrent heat exchange with 
assigned temperatures of each stream at the inlet and 
coupling conditions in the form of temperature and flux 
continuity at the boundary of the two streams. Nunge and 
Gill [ 1 ] analysed the convective heat transfer during laminar 
Newtonian flow in parallel plate channels for counter flow of 
the two streams assuming the same physical properties in 
both the streams. This analysis was extended to laminar flows 
in double pipe heat exchangers by Nunge and Gill [2], Blanco 
et al. [3] and Stein [4], and for turbulent flow by Blanco and 
Gill [5]. For a class of countercurrent systems characterized 
by the feature that the resistance to transfer in one of the 
phases is negligibly small, Safonov and Potapov [6, 7~ 
developed a method for obtaining the local and asymptotic 
Nusselt numbers and applied it to countercurrent heat or 
mass transfer during laminar flow in parallel plate channels 
and in circular tubes. This analysis is particularly suitable for 
systems in which the two streams differ sharply in their 
physical properties. 

Hitherto all the studies have considered that both the 
fluid streams are Newtonian. In practice, counter flow heat 
exchangers where one of the stream fluids is non-Newtonian 
find wide applicability in polymer processing operations. It 
is the objective of the present work to provide a simplified 
analysis of the counter flow heat exchanger problem with 
one non-Newtonian fluid stream in which lies the major 
resistance to the transfer and negligible resistance in the 
annular stream. The non-Newtonian fluid considered is of 
the power law type and it will be shown that the results of 
Safonov and Potapov [7] for Newtonian flow and the 
Graetz-Nusselt problem for power law flow [8] are par. 
ticular cases of the present work. 

2. S T A T E M E N T  O F  T H E  PROB1.EM 

Consider a concentric tube heat exchanger with a power 
law fluid flowing in the inner tube. The flow is assumed 
fully developed and laminar. Heat exchange occurs with 
the annular fluid flowing countercurrent to the fluid inside 
the inner tube. If we make the assumption that the resistance 
to heat transfer lies entirely on the side of the non- 
Newtonian fluid, then the temperature in the external stream 
can be taken as constant throughout the transverse section. 
Transfer due to axial conduction in the inner tube is con- 
sidered negligible compared to convective transfer. Tempera- 
ture averaged physical properties will be used in the analysis. 
The length of the tube is assumed to be sufficiently long 
that thermal equilibrium is established far away from the 
inlet of the inner tube. In other words, the temperature of 
the inner tube wall approaches the inlet temperature of the 
outer stream at large distances downstream of the inner 
fluid. This last assumption imposes a condition that 

w~ Cp1 
A . . . . .  <1 .  {11 

W2 Cp2 

Thus, the investigation is limited to the range 0 ~< A < 1. 

3. MATH[EMATICAL ANALYSIS 

The energy equation for fully developed laminar flow in a 
circular tube with negligible axial conduction is given by 

For a power law fluid, 

[3n+ 1',[ ! ) "  ~r, ~1 

where n is the flow behaviour index and ro is the radius 
of the inner tube. From the assumption that thermal 
equilibrium is established far away from the inlet, the cot> 
dition for constancy of heat flux through a cross-section of 
the exchanger can be written as 

r o 

zr~t)~('Pl ~ v:TIrdr--w2Cp2Tli~ 
d 0 

Equations (2)-(4} are written in terms of dimensionless 
variables as 
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Table 1. The first eigen value fl, for various values of n and A 

995 

n 

A 0.2 0.4 0.6 0.8 1.0 

0 2.4493675 2 . 5 2 8 7 4 0 4  2 . 5 9 9 2 3 1 7  2 . 6 5 9 0 8 8 5  2.7043642 
0.2 2 . 2 3 6 7 6 8 5  2 . 3 0 5 4 1 8 1  2 . 3 6 8 2 7 3 8  2 . 4 2 0 2 7 4 7  2.4629091 
0.5 1.8238731 1 . 8 7 5 1 0 6 2  1 . 9 2 4 5 0 4  1.9658904 2.0 
0.8 1.1891274 1 . 2 1 9 4 6 0 8  1 . 2 5 0 4 8 3 1  1 . 2 7 6 8 1 9 6  1.2986429 
0.999 0 .08970713  0 .08970713 0 .09223019 0 .09342357 0.09392583 

and 

2A( 3n+l ' ]  [I(1-R("+i)t")ORdR=O[~=I. (6) 
\ n + l / J o  

The additional boundary condition is, 

at R = 0 ,  dO/dR=O (7) 

which results from cylindrical symmetry. The inlet condi- 
tions for the inner tube is given by 

at ¢ = 0  {0 = I(0~<'R < 1) 
A(R = 1) (8) 

for A = 0, equation (6) becomes, 0IR:~ = 0, which is the 
condition for the Graetz problem (uniform wall tempera- 
ture). Equation (5) can be solved by separation of variables. 
Thus, 

0 = Y-,B,(olexp(- 3~+1 #~¢~ (9) 
\ n + i  / 

where the eigen function ~ satisfies the Sturm-Liouville 
equation 

d24~ 1 d4~ +WS-ff~+fl2(1-R'"+~)/")4) = 0 (10) 
dR 2 

with the boundary conditions, 

and 

d,~ 
- - = 0  at R = 0  (11) 
dR 

For A = 0, 

1 4>~lR:l 

n,= #~ fo R(1_R(.+,)~.)4~dR (16) 

The local Nusselt number is obtained from 

Nuz 2~R a=a (17) 
0b-0lR:, 

where 0b is the cup mixing temperature of the inner stream 
and is given by 

2(3n+ 1) r t 
0l, (n+~ Jo O(1-Rt"+iiI")RdR" (18) 

Combining equatibns (9), (17) and (18), 

[ 3n+ l  2 \ 
2A~B,@;I.:, exPt- n-~]- #i ~ ) 

Nuz = (19) 
ex / 3n+l  ~ \ ¢) 

for 0 < A < I  
and 

EB 2 , / 3n+1 2 ,#, +,'.=, °xpt- P, 9 
NuL (20) 

3n+ l  z (3n+ I) EB,4~I,=x exp(-n-- ~ f l i  ~) 

for A = 0 .  

2A¢3o+1  r' 
\ n + l  ,]Jo (1-Rt"+I)/")dpRdR = 4~[R=l' (12) 

II 
' I ' I ' I ' 

A: 0.2 
Combining equations (10) and (12), and evaluating the 
integral, equation (12) can be written in the alternative - - - / k =  0.999 
form as 

2A/3n+ 1\ , [ .%5- )~  r.=, + m ~ f . . ,  = 0. (13) 9 ~ 

The eigen functions q~ are orthogonal in the interval 8 h \  \ \ \ \ l i \ \  
0 ~< R ~< 1 with respect to the weighting function, 

/(R) = R(1-R'"+'""I ( .+1) ~ 7 1 t \ \ \  ",, 
2A--~n ~-]~ 6(R = 1) (14) I%~ \X  ~ " - -  n-0.2 

T \\'>x. where 6 is the Dirac delta function. I i ' k  " ,J~-, ._ 0.4 0.6 
Using the initial condition and the orthogonality of the 5 . . . .  ~_-'_'---~7/_-_--__----------_ - 

eigenfuncti°ns'thec°nstantsBiinequati°n(9)are°btainedt~_ 
from the relation, 

(n+l)  '1 A~ i 
~L. , l , l , i , 

~bdR=x"' "t (15) "O 004 0.08 012 

fo 0.16 Bi A ' (n+ 1) 2 

R(1-R("+')/")~b 2 dR 2(~n+--1) ~bi }R=, FIG. 1. Local Nusselt number vs ~ for various values of 
for 0 < A < I .  A and n. 
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[ m .  2. Asymptotic Nusselt number  vs A for various values 
ofn.  

At large distances downstream only the first term in the 
series is of major significance and hence, the asymptotic 
Nusselt number  is given by 

Nu,  = . . . . . . . . . . .  . t2l) 
( 1 - A ) ( 3 n +  1) 

4. C O M P t T A T t O N A L  R E S U L T S  A N D  D I S C U S S I O N  

Equation (10), together with the boundary conditions I 111 
and (13) was solved by numerical integration using the 
Runge Kut ta  IV order method.  Starting with a trial value 
for [L the correct eigen value was obtained by a damped 
Newton Raphson  iteration. The first six eigen values were 
computed for various values of n and A, For A = 0. the 
eigen values coincided with those given by Lyche and Bird 
[8]. 

For the range of values used for A, only the lirst eigen 
value was significantly different, the other eigen values 
differing only slightly. This is due to the condition gken  by 
equation (6), which was derived on the assumption that 
thermal equilibrium is established at large distances down- 
stream. Table 1 gives the first eigen value for various values 
of the parameters.  

The local Nusselt  number  is plotted in Fig. 1 as a function 
of the dimensionless axial distance ~ for two values of A. 
Since the calculations cannot be made for A = 1, a value of 
A = 0.999 was chosen to obtain the limiting behaviour, As c: 
increased the wall temperature of the inner tube approached 
the outer stream temperature and there is a reduction in 
the driving force for heat exchange. This is reflected in the 
drop in the local Nusselt  number  from a maximum value at 
the entrance to an asymptotic value at larger distances 
down stream. It can be seen from Fig. 1 that the local 
Nusselt numbers  are much  higher as A increases. This is 
because, at larger values of A, the mass flow rate of the 
inner stream is higher resulting in a larger heat-transfer 
coefficient. The values of the local Nusselt numbers  for 
A = 0.999 are very close to those for the case of uniform 
wall heat flux for n = 1 given by Hsu [9]. Thus,  the values 
of Nut for A = 0 and A = 0.999 can be taken as the lower 
and upper bounds for the local Nusselt  numbers.  This is 
supported by the work of Nunge and Gill [2] who observed 
that A = 1 closely approximates the uniform wall flux 
behaviour both locally and asymptotically. 

The effect of non-Newtonianism is also quite signilicani 
The local Nusselt numbers  increase with increasing ~alues 
of the flow behaviour index n. This increase is more pr<~- 
nounced for n less than 0.6. For example, t\w ;- = 0.05 and 
A = 0.2, the increase in Nut above that for the Ne,atonian 
fluid is 3% t\*r a fluid with n = 0 . 8 ,  7!'i, for a fluid ~ith 
n = 0.6, 16°;-, for a fluid with n - 0.4 and 33"{; lor a fluid , ith 
n = 0.2. 

"[he asymptotic Nusseh number Nu. is plotted agam~,t ~ 
for various values ofn in Fig. 2.,For n = l, the ~ alues coincide 
with those of Safonov and Potapov [7]. l'he advantages ol 
presenting the data in terms of the asymptotic Nus~,elt 
number are that Nu, is independent of the expansion 
coefficients, irwolves on13, the first eigeu ~alue thereby de- 
creasing the amount of computation and reveals directly the 
performance of a long tube exchanger. Since A - 0  corre- 
sponds to the case of uniform wail temperature and 
A =: 0.99 ) closely approximates the case of uniform wall heat 
flux. the asymptotic Nusselt numbers  at the two ends on 
the figure gi\.e the lower and upper bounds on N , , ,  l i c i t  
again, it is seen that the values of ~,h~, are higher as ~ 
decreases. In other words, for a given long tube exchanger. 
given the flow rates of both the streams, the heat flux at the 
inner ~all increases w i t h  increasing departure from 
Newtouian behaviour. 

s. (ONCLt StuNs 

l o r  a counterflow double-pipe heat exchanger with a 
power-law non-Newtonian fluid in laminar flow in the innel 
tube the local and asymptotic Nusselt ntmlbcrs as a htnction 
of the flow behaviour index and the parameter A are 
presented. The cases corresponding to A = 0 and A .... 1 
fornr the lower and upper bounds for the Nusseh nun/be~,  
The Nusselt numbers  increase with increasing value> ~1 \ 
and decreasing values ofn. The asymptotic Nusselt number-, 
can be used for the design of long tube exchangers. 
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